

Inhalt dieser Ausgabe

News: "Neue" Fischkrankheiten - VHS und PKD	-2-
Echinodorus-Arten im Handel – Who is who Teil II - E. amazonicus, E. bleheri, E. paniculatus und E. parviflorus	- 3 -
Algen – Freund oder Feind? - Teil I: Allgemeines und Grünalgen	- 7 -
Wirbellose: Neritina gagates	- 13 -
Pflanzenportrait: Aegagropila linnaei	- 15 -
Vorschau auf den nächsten Newsletter	- 16 -

Impressum:

Der heimbiotop-newsletter ist ein Informationsblatt der Heimbiotop GbR Maike Wilstermann-Hildebrand und Cord Friedrich Hildebrand

Ludwigsburger Steige 119 71686 Remseck/Neckar

v.i.S.d.P. Maike Wilstermann-Hildebrand und Cord Friedrich Hildebrand

News: "Neue" Fischkrankheiten - VHS und PKD

Zwei Fischkrankheiten, die beide bereits seit mehreren Jahrzehnten bekannt sind, verursachen in den letzten Jahren verstärkt für Krankheitsfälle in Wildbeständen.

VHS heißt der Rhabdovirus, der erstmals 2005 in den großen Seen in den USA und Kanada gefunden wurde. Die Abkürzung steht für Viral Hemorrhagic Septicemia. Zu den Symptomen gehören Blutergüsse der Haut und Blutungen in den Augen. Die Fische sterben an inneren Blutungen. Der Virus verursacht Fischmassensterben in Lake Erie, Lake Ontario und anderen großen Nordöstlichen Seen der USA.

Der Virus ist auch in Europa bekannt seit dem 27.3.1995 besteht in der BRD eine Anzeigepflicht für VHS. Gefunden wurde der Erreger aber bereits 1938. In Europa stellt die VHS, neben IHN (Infektiöse Hämatopoetische Nekrose), die wichtigste Viruserkrankung in der Zucht von Regenbogenforellen dar. Es gibt verschiedene Serotypen, die nicht alle die gleichen Fische infizieren. Besonders anfällig sind Regenbogenforellen (*Oncorhynchus mykiss*). Aber auch Bachforellen (*Salmo trutta fario*), Äschen (*Thymallus thymallus*) und Hechte (*Esox lucius*) können mit dem für Bachforellen gefährlichen Virus infiziert werden. Allerdings führt er bei diesen Arten nicht unbedingt zu einem Krankheitsausbruch. Die Fische verbreiten den Virus aber trotzdem. Auch Meeresfische können mit dem Virus infiziert werden und in übertragen.

Bisher waren nur aus Fischzuchten Massensterben bekannt. Im Jahr 2005 wurde der Virus aber zum ersten Mal im Lake Erie, Lake Ontario um Lake Huron und Lake Niagara nachgewiesen. Da der Virus eine neue Bedrohung für die Fischwelt in den großen Seen darstellt fehlt den Fischen jede Immunabwehr.

Im März und April 2007 wurden mehrere tausend Hechte (*Esox masquinongy*) im Lake St. Clair von dem Virus getötet.

Im Lake Erie starben vermutlich 100.000 Süßwassertrommler (*Aplodinotus grunniens*) und tausende Gelbbarsche (*Perca flavescens*) im Frühjahr an dem Virus. Im Lake Ontario waren es im Mai 25.000 Round Gobies (*Neogobius melanostomus*). Auf Menschen ist VHS nicht übertragbar, bedroht aber mittlerweile mehr als 30 verschiedene Fischarten Nordamerikas. Es wird vermutlich über Köderfische und Booten verbreitet.

PKD (Proliferative Kidney Disease) ist eine Nierenerkrankung, die durch einen Parasiten verursacht wird. Wirklich neu ist die Krankheit nicht. Sie wurde in Gewebeproben aus dem Jahr 1958 nachgewiesen. Bisher waren allerdings vor allem Tiere aus Fischzuchten mit hohen Bestandsdichten bekannt. Bis zu 100% der Tiere werden infiziert, bis zu 80% der Bestände sterben. In den letzten

heimbiotop-newsletter

Informationen und Angebote aus dem heimbiotop-onlineshop

Jahren tritt sie aber auch zunehmend im Freiland im Freiland auf. Betroffen sind vor allem Salmoniden. Vor allem die Regenbogenforelle (*Oncorhynchus mykiss*) ist die am häufigsten infizierte Art. Aber auch Bachforelle (*Salmo trutta*), Bachsaibling (*Salvelinus fontinalis*), der Atlantische Lachs (*Salmo salar*), die Äsche (*Thymallus thymallus*), der Hecht (Esox lucius) und andere Arten werden infiziert.

Der Parasit Tetracapsuloides bryosalmonae wurde 2002 beschrieben. Er stellt die einzige Art der Gattung dar. Die Myxozoa-Parasiten, zu denen die Art gehört, benötigen für ihren Entwicklungszyklus Wirbellose. Erst 1996 konnte die DNA des Parasiten in den Moostierchen Cristatella mucedo, Pectinatella magnifica und Plumatella rugosa nachgewiesen werden. Damit ist der Entwicklungszyklus geklärt worden.

Krankheitssysmptome sind äußerlich kaum sichtbar. Geringe Zuwächse können ein Anzeichen sein. Niere und Milz sind vergrößert. Hauptsächlich werden die Fische im Mai und Juni infiziert. Die Krankheit bricht dann etwa 12 bis 16 Wochen nach der Infektion im Juli und September auf.

Echinodorus-Arten im Handel – Who is who Teil II – E. amazonicus, E. bleheri, E. paniculatus und E. parviflorus

Die Amazonas-Schwertpflanzen gehören zu den beliebtesten tropischen Froschlöffeln überhaupt. Diese großen Pflanzen mit ihren hell grünen Blättern hat vermutlich jeder Aquarianer irgendwann einmal kultiviert. Die Pflanzen sind anspruchslos, gutwüchsig und stabil. Sie werden von Welsen gerne als Ruheplatz genutzt und dienen Skalaren und anderen Fischen als Laichsubstrat. Es werden drei Formen von Amazonas-Pflanzen im Handel angeboten – alle drei sind Formen von Echinodorus grisebachii. Allerdings gehört der allseits bekannte Echinodorus paniculatus nicht dazu. Diese Art gehört in einen anderen Verwandtschaftskreis.

Bereits 1994 wurden *Echindorus amazonicus*, *E. bleheri* und *E. parviflorus* von Haynes und Holm Nielsen als Formen von *Echindorus grisebachii* identifiziert. In der Aquaristik konnte sich die Zusammenfassung der Formen unter einem Namen jedoch nicht durchsetzen, weil die Formen sich zu deutlich unterscheiden.

E. bleheri ist die typische Amazonas-Schwertpflanze

Die größte und breitblättrigste Form ist *Echinodorus bleheri*. Diese wird oft auch als *E. paniculatus* angeboten, weil die Überwasserform der Variante einmal falsch bezeichnet wurde. Der echte *Echinodorus paniculatus* hat aber langgestielte, schmale Blätter, die unter Wasser fast bandförmig werden. *Echinodorus bleheri* dagegen hat breit lanzettliche Blattspreiten, die sich über und unter Wasser kaum unterschieden.

Die Pflanzen wurden 1970 zu Ehren von Amanda Bleher benannt, die zu der Zeit mit ihrer Wasserpflanzengärtnerei Lotus Osiris in Brasilien den Import vieler neuer Pflanzen nach Europa ermöglichte. Da der Artname sich auf eine Frau bezieht müsste nach den Regeln der internationalen Nomenklatur der Artname "bleherae" lauten. Allerdings hat sich der von Rataj ursprünglich "falsch" vergebene Name derartig eingebürgert, dass es unmöglich ist in heute noch durch zu setzen.

Die Herkunft dieser Form ist nicht bekannt. Chromosomenuntersuchungen haben ergeben, dass es sich um eine triploide Pflanze mit 33 Chromosomen handelt. Das bedeutet, dass der Chromosomensatz nicht doppelt (einmal Mutter ein zusätzlicher, vollständiger plus einmal Vater) vorliegt, sondern Chromosomensatz vorhanden ist. Das kann vorkommen, wenn Störungen bei der Teilung der Keimzellen auftreten. Triploide bzw. polyploide Pflanzen sind in der Regel größer als diploide. Sie sind meist aber aus steril, weil die Chromosomen bei der Bildung von Keimzellen nicht gleichmäßig verteilt werden können. Auch Echinodorus bleheri produziert keine keimfähigen Samen. Dafür ist die vegetative Vermehrung über Ableger stark ausgeprägt. Eine Eigenschaft, die die starke Verbreitung der Pflanzen in der Aquarienkultur vorangetrieben hat.

Über Wasser sind die hell grünen Pflanzen etwa 40 cm hoch. Die Blattstiele sind

E. amazonicus bleibt etwas kleiner

bis 25 cm lang und damit oft länger als die Spreite. Diese ist 10 bis 16 cm lang und 4 bis 6,5 cm breit. Manchmal sind sie leicht seitwärts gebogen oder etwas gewellt. Das Verhältnis der Spreitenbreite zur Länge beträgt 1: 2,2 bis 2,8. Unter werden die zwischen 14 und 26 cm lang und 6 bis 9 cm breit. Die Blattstiele können bis zu 30 cm lang werden. Das Verhältnis von Blattlänge zu Blattbreite verschiebt sich auf 1: 2,8 bis 3,5. Das heißt die Blätter werden in der Unterwasserkultur im

heimbiotop-newsletter

Informationen und Angebote aus dem heimbiotop-onlineshop

Verhältnis zu ihrer Breite länger.

Die zweite Form ist *Echindorus amazonicus*. Sie wurde ebenfalls 1970 von Rataj beschrieben. Der Artname bezieht sich auf das Verbreitungsgebiet im Einzugsgebiet des Amazonas (Brasilien).

Über Wasser sind die Pflanzen 10 bis 30 cm hoch. Die Blattstiele können doppelt so lang sein wie die lanzettliche Spreite. Unter Wasser werden die Pflanzen 30 bis 50 cm hoch. Die Blattstiele sind dann mit etwa 10 cm deutlich kürzer als bis zu 40 cm langen Spreiten. Diese sind oft in sich etwas säbelartig seitwärts gebogen. Die Blüten haben einen Durchmesser von etwa einem Zentimeter. Die Vermehrung erfolgt über Samen und Adventivpflanzen an den Blütenstandstielen. Die Pflanzen haben einen diploiden Chromosomensatz von 22 (2n = 22). Die Pflanzen lassen sich gut im Aquarium kultivieren. Sie stellen keine besonderen Ansprüche an die Wasserverhältnisse und wachsen gut bei 24 bis 28 °C.

Die dritte Form ist Echindorus parviflorus. Auch diese wurde zusammen mit

den anderen von Rataj beschrieben. Der Artname "parviflorus" bezieht sich auf die kleinen Blüten, die aber nicht nur für diese Form, sondern für alle Typen von *E. grisebachii* typisch sind.

Wie bei *Echinodorus bleheri* ist auch für diese Varietät kein Fundort bekannt.

Über Wasser ist de Pflanze auffallend steif. Die mittel grünen Spreiten sind oft etwas bullos. weil sich die Interkostalflächen zwischen Blattadern nach oben wölben. Dadurch sind die Adern auffallend hervorgehoben. Die Pflanzen wachsen im Gewächshaus langsamer als die anderen Formen und bilden weniger Adventivpflanzen. Daher ist diese Form seltener im Handel.

Die Pflanze wurde als "Schwarze Amazonas" bekannt. Diesen Namen hat

E. parviflorus im Gewächshaus

sie daher, dass die Queradern in den Blättern der Jungpflanzen dunkelbraun bis schwärzlich sein können. Im Aquarium wächst die Pflanze gut bei Temperaturen zwischen 24 und 28 °C, ohne besondere Ansprüche an die Wasserbedingungen. Bei Beleuchtungsdauern über 12 Stunden (Langtag) werden kurze Blattstiele und lange Blattspreiten gebildet. Unter Kurztagbedingungen werden die Blattstiele länger und die Spreiten kürzer. In der Literatur wird angegeben, dass

sich unter Wasser Adventivpflanzen nur im Kurztag (unter 12 Stunden Beleuchtung) entwickeln. Das widerspricht jedoch unseren eigenen Beobachtungen. Auch bei einer Beleuchtungsdauer von 15 Stunden werden Adventivpflanzen gebildet.

E. parviflorus 'Tropica' ist eine kleine Selektion

Unter dem Namen *Echindorus parviflorus* 'Tropica' - oder fälschlich auch als "E. opacus" ist seit 1985 eine Selektion auf dem Markt, die sehr langsam wächst und klein bleibt. Die Blattspreite ist zwischen 6 und 10 cm lang und 3 bis 5 cm breit. Wie bei der Normalform sind sie auch bei dieser Selektion etwas bullös. Die Blätter haben eine bespitzten Spitze. Die Pflanzen werden über Wasser maximal 25 cm hoch, meistens erreichen sie kaum 15 cm. Unter Wasser sind es selten 10 cm. Diese

Pflanzen sind sehr langsam im Wachstum und benötigen im Aquarium viel Licht und Dünger.

Die ursprünglich als *Echinodorus grisebachii* beschriebene Pflanze wurde von Small 1909 beschrieben und zu Ehren eines deutschen Botanikers (H.R.A. Grisebach, 1814-1879) benannt. Sie ist sehr häufig in Mittel- und Südamerika anzutreffen. Über Wasser sind die Pflanzen 10 bis 30 cm hoch. Die Blattstiele sind 2 bis 23 cm lang. Die lanzettlichen Blattspreiten erreichen eine Größe von etwa 5-12 cm Länge und 1,5 bis 6 cm. Breite, Unter Wasser werden die Blätter mit bis zu 60 cm deutlich länger. Die Blattspreite ist linealisch bis bandförmig und transparent mittel- bis dunkelgrün. Sie wird etwa 40 cm lang und 0,5 bis 4 cm breit. Es wurde eine Chromosomenzahl von 2 n = 22 ausgezählt.

Die Pflanzen sind in der Kultur über Wasser schwierig und werden darum nicht in Gärtnereien vermehrt. Unter Wasser wachsen die Pflanzen an einem freien Standort, in gedüngtem Substrat bei pH-Werten zwischen 5,8 und 7,5 recht gut. Die kurz gestielten, langen schmalen Blätter bilden einen schönen Blickfang. Leider wird die Art nur selten importiert und ist darum so gut wie nicht im Handel erhältlich.

Es gibt also drei Formen von *Echinodorus grisebachii* im Handel, die als *E. bleheri, A. amazonicus* und *E. parviflorus* angeboten werden. *Echindorus paniculatus* ist eine andere, nicht verwandte Art. Früher wurde *E. bleheri* fälschlich unter diesem Namen verkauft.

Alle drei Formen wachsen im Aquarium gut und sind empfehlenswerte, groß werdende Aquarienpflanzen. Sie bilden auch unter Wasser Adventivpflanzen und lassen sich darum im Aquarium problemlos vermehren. Sie sind alle drei sehr empfehlenswerte Pflanzen.

Algen – Freund oder Feind? – Teil I: Allgemeines und Grünalgen

Wer sich schon Mal über Algen im Aquarium geärgert hat, wird Algen als feindliche Invasoren einstufen, die sorgsam gepflegte submerse Grünanlagen als Unkraut überwuchern. Wer sich mit Biotechnologie, Krebsforschung, Kosmetik oder Aquakultur beschäftigt, wird viele positive Aspekte an Algen finden.

Außerdem werden Algen schon heute als Lebensmittel der Zukunft propagiert. Wussten Sie zum Beispiel, dass es Würste gibt, die über Algen geräuchert werden? Oder kennen sie vielleicht Algenbrot?

Algen sind bekanntlich vielgestaltige, anpassungsfähige Lebewesen. Etwa 400.000 Arten gibt es. Der Begriff bezeichnet Organismen, die Photosynthese mit Hilfe von Chlorophyll oder anderen respiratorischen Pigmenten betreiben und sich über Sporen fortpflanzen. Diese Eigenschaften findet man bei Arten aus dem Reich der Pflanzen (Plantae), Prokaryonten (Monera), Eukarionten (Protista), Pilze (Fungi) und der Tiere (Animalia). Einige dieser Organismen bewegen sich mit Hilfe von Geißeln oder Wimpern fort.

Ein Teil der Algen lebt an Land, auf feuchter Erde oder auf der Rinde von Bäumen. Auf einem einzigen Ast können es bis zu 50 verschiedene Arten sein. Einige davon leben mit Pilzen in Symbiose und formen Flechten (Lichenophyta). Es gibt keine brauchbare Systematik für diese Chimären, weil die Entwicklungszyklen der Pilze sich in Verbindung mit den symbiotischen Algen verändern. Mit verschiedenen Algen bilden die Pilze unterschiedlich geformte und gefärbte Flechten. Hauptsächlich bilden Grünalgen oder Blaualgen mit Schlauchpilzen (Ascomyceten) oder Ständerpilzen zusammen (Basidiomyceten) die Thalli der Flechten. Die Alge übernimmt dabei die Funktion der Energiegewinnung aus dem Sonnenlicht und versorgt den Pilz mit Energie, Eiweißen und Zuckern, während der Pilz Wasser und anorganische Nährstoffe sammelt und speichert.

Für uns sind aber vor allem die Wasserlebenden Algen von Interesse. In diesem ersten Teil über Algen soll es nun vor allem um Grünalgen gehen.

Grünalgen sind allgegenwärtig. Stellt man ein Glas mit Wasser auf die Fensterbank, werden sich nach wenigen Tagen grüne Algenbeläge darin bilden oder das Wasser selbst durch Schwebealgen grün werden. Eine einzelne Algenspore ist ausreichend um ein neues Gewässer zu besiedeln. Dabei ist es gleichgültig ob es sich um Leitungswasser in einem Glas oder Aquarium handelt oder um Regenwasser in einem Hufabdruck. Das ist ein ganz natürlicher Vorgang und Bestandteil der natürlichen Entwicklung von Gewässern. Algen sind Primärproduzenten, die aus Licht, Wasser, Kohlendioxid und anorganischen Nährstoffen Eiweiße, Zucker, Vitamine und andere organische

Verbindungen herstellen. Diese Fähigkeit teilen sie mit höheren Pflanzen diese entwickeln und vermehren sich aber wesentlich langsamer.

In Klötze, einem kleinen Ort in Sachsen-Anhalt, steht ein so genannter Photobioreaktor. In einem langen System aus lichtdurchlässigen Röhren fließt Wasser in dem in Reinkultur die Grünalge *Chlorella vulgaris* wächst. Diese kleine Schwebealge bildet täglich 4 bis 16 Tocherzellen. Auf diese Weise entstehen in dem Bioreaktor jährlich 50 Tonnen verwertbare Pflanzenmasse pro Jahr und Hektar. Die konventionelle Landwirtschaft erzielt mit Hochleistungsweizen nur 4 bis 6 Tonnen pro Hektar und Jahr. Nun wissen wir alle, dass aus Weizen Mehl und aus Mehl Brot wird. Aber worin liegt der Wert von 50 Tonnen *Chlorella*?

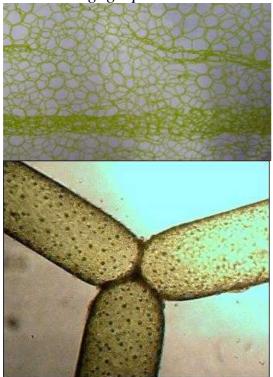
Chlorella ist ein gutes natürliches Nahrungsergänzungsmittel. In der Regel werden aus dem Algenpulver Tabletten hergestellt. Es kann aber in Pulverform Nahrungsmittel zugesetzt werden. In Klötze wird zum Beispiel ein Algenbrot gebacken, das 3 % Chlorella enthält. Auch als Futter für Zierfische ist Chlorella interessant. Sie enthält etwa 50 % Proteine, 5 % Kohlehydrate und 10 bis 15 % Fettsäuren, von denen viele essentiell für die menschliche Ernährung sind. 70% der enthaltenen Fettsäuren sind ungesättigt. Zusätzlich produziert die Alge Phytochelate, die Schwermetalle binden. Darum wird sie bereits seit einiger Zeit bei der Behandlung von Amalganvergiftungen genutzt. Aber die positiven Effekte reichen weiter. Etwa 3 g pro Tag verbessern bei einem Menschen mit einem Körpergewicht von 75 kg (Modellmensch der Medizinstatistik) Hautkrankheiten, senken den Blutdruck, wirken gegen Diabetis II und reduzieren die Infektionsanfälligkeit. Es macht Sinn, dass solche vielseitigen Organismen als erste ein neues Ökosystem besiedeln. Die nachfolgenden Tiere und Pflanzen finden nicht nur die Alge als Nahrung, sondern auch ein besseres Milieu vor.

Eine weitere wirtschaftlich interessante Grünalge ist die bekannte *Spirulina*, die man ebenfalls in Nahrungsergänzungsmitteln und Fischfutter findet. Eine Mischung aus Magerjoghurt und Algenpulver soll bei L-Welsen (Loricidae) die Darmflora verbessern.

Weit weniger beliebt sind die meisten anderen der etwa 13.000 bekannten Grünalgenarten. Dabei sind Algen in jeder Hinsicht wichtig für den Menschen und alle anderen Lebewesen. Es wird geschätzt, dass etwa 50 % des Sauerstoffs unserer Atmosphäre von Algen produziert und etwa 40 bis 50 % des Kohlendioxids assimiliert werden.

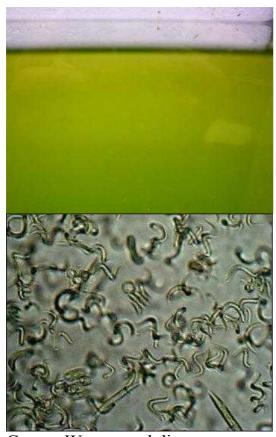
Algen geben aber nicht nur Sauerstoff ab, sondern auch Polysaccharide (Zucker), Vitamine, Eiweiße, Enzyme, RNS, DNS und phenolische Substanzen. Diese Stoffe dienen Mikroorganismen als Nahrung. Sie fördern oder hemmen aber auch andere Lebewesen in ihrer Umgebung. Marine Rotalgen hemmen zum Beispiel Pilze, pathogene Bakterien andere Algen und Cyanobakterien. Nicht

alle Algen sind in der Lage Vitamin B12, Thiamin und Biotin selbst zu produzieren. Andere produzieren wiederum diese Substanzen im Überschuss, geben sie ans Wasser ab und ermöglichen es den anderen Arten in ihrer Nähe zu wachsen. Wieder andere Algen produzieren Glycoproteine, die die Vitamine im Wasser binden und für andere Algen unerreichbar machen. So verdrängen sie die Arten ohne eigene Vitaminproduktion. Im Entwicklungsverlauf von Ökosystemen kommt es darum auch immer wieder zu Wechseln in der Artzusammensetzung.


Ein gutes, wenn auch negatives, Beispiel ist die Invasion von *Caulerpa*-Arten im Mittelmeer. Grundlage der Nahrungskette im Mittelmeer ist das Seegras *Posidonia*. Gerade dieses wird nun von der Grünalge verdrängt. Darum wird die Alge nun intensiv wissenschaftlich untersucht. *Caulerpa racemosa* ist eine subtropische Alge, die eigentlich nur bei Temperaturen um 25 °C leben kann. Die Pflanzen, die durch den Suezkanal ins Mittelmeer eingewandert sind, sind allerdings mutiert und wachsen nun auch noch bei Temperaturen um 7°C. Dadurch können sie sich problemlos nach Norden ausbreiten. Die Ausbreitung geht schnell voran, weil diese Algen durchschnittlich zwischen Frühjahr und Herbst einen Zentimeter am Tag wachsen. Unliebsame Konkurrenz wird dabei einfach überwachsen oder mit Hilfe des Toxins Caulerpenin vergiftet. Extrakte aus diesen fiesen Algen haben mittlerweile eine Wirksamkeit gegen Krebs gezeigt.

Die Grünalge Chlamydomonas reinhardtii ist weder kulinarisch noch medizinisch von Interesse. Diese kleine Grünalge gehört zur Ordnung Volvocales, deren vegetative Zellen mit Geißeln ausgestattet sind und sich aktiv fortbewegen können. Teilweise werden Kolonien gebildet. Das bekannteste Beispiel aus der Ordnung ist die Gattung Volvox, von der es weltweit 18 und in Europa 2 Arten in Seen und Teichen gibt. Sie bilden frei treibende, kugelförmige Kolonien aus bis zu 20.000 Zellen, die mit Strängen aus Zellplasma verbunden sind. Volvox verursacht auch "grünes Wasser" in neu eingerichteten Aquarien. Chalamydomonas reinhardtii ist ebenfalls eine grüne Schwebealge und macht Wasser grün. Die art ist das Forschungsobjekt von Dr. Anja Hemschemeier an der Universität Bochum. Die Alge reagiert nämlich auf Schwefelmangel mit einer Stressreaktion, die Wasserstoff freisetzt. Das dafür zuständige Enzym (Hydrogenase) ist so effektiv, dass 40 g davon ausreichen würden um ein Spaceshuttle innerhalb von 2 Stunden zu betanken. Das einzige Problem ist die Gewinnung einer so großen Menge des Enzyms aus der winzigen Alge. 40 g ist wenig im Vergleich zum Spaceshuttle, aber verdammt viel in Bezug zur Alge!

Aquaristisch erregen Grünalgen aber eher weniger unser positives Interesse. Der Algenball oder Moosball, der unter dem Namen *Cladophora aegagropila* in unsere Aquarien kam, ist da eine Ausnahme. Diese fädige Grünalge bildet stark verknäulte Bälle, die wegen ihrer ungewöhnlichen Form interessante gestalterische Akzente setzen. Der aktuellen Nomenklatur folgend heißt die Art


Aegagropila linnaei

Hydrodictyon reticulatum

heute Aegagropila linnaei. Sie wird im Pflanzenporträt dieser Newsletter-Ausgabe vorgestellt. näher Eine andere Ausnahme ist das Wassernetz Hydrodictyon reticulatum. Diese Alge gehört zu den Hydrodictyaceae. Sie kommt in Seen Teichen und Flüssen vor. Sie bildet Kolonien, aus vielen tausend Zellen, die in sackförmigen Netz angeordnet sind. An jedem "Knoten" dieses Netzes der Regel in schlauchförmige, etwa 1 cm lange Zellen aufeinander. Auf diese Weise bilden sich wabenförmige, vier, sechsoder achteckige Maschen. Jede Zelle hat zahlreiche Zellkerne. Innerhalb der Zellen entstehen bis zu 20.000 begeißelte Zoosporen, die sich bereits in der Mutterzelle zu einem Netz anordnen. Durch das Zerreißen der Membran der Mutterzelle, wird das Netzchen frei und wächst schnell. Sie treiben frei im Wasser und können etwa 20 cm lang werden. Sie kommen in sauberen bis mäßig verschmutzten Gewässern vor. Diese Alge interessant zu beobachten, aber für die Aquaristik bisher ohne Bedeutung. Die Algen lassen sich leicht auf der Fensterbank kultivieren

Wichtiger sind die Arten, die sich im Aquarium schnell vermehren und unseren kultivierten Aquarienpflanzen das Licht und die Nährstoffe streitig machen. Zum Anfang sind es vor allem grüne Schwebealgen. Diese nutzen die

Grünes Wasser und die Schwebealgen, die es in diesem Fall verursachen: Hyaloraphidium contortum, Scenedesmus acuminatus und Monorhaphidium contortum

Nährstoffe und das Licht effektiv aus haben eine Vermehrungsrate. Es bildet sich grünes Wasser. Das ist nicht schön, verschwindet aber in der Regel nach einiger Zeit von allein. Es ist nur mit einem Diatomeenfilter möglich kleinen Algen aus dem Wasser Ihnen die Nährstoffe entziehen, in dem man das Wasser über Aktivkohle filtert, ist zwar möglich, aber nicht sinnvoll. Die Nährstoffe werden auch unseren ia von Aquarienpflanzen benötigt. gilt Das natürlich auch für alle anderen Grünalgen. Eine weitere Bekämpfungsmöglichkeit ist der Einsatz von Algenbekämpfungsmitteln. Diese enthalten in der Regel Kupfer, teilweise Herbizid ein _ also Unkrautvernichter – mit Namen Atrazin. Daraus ergeben sich gleich Probleme. Das eine ist das Kupfer, das andere das Atrazin. Kupfer ist giftig für Mikroorganismen, wie wir sie im Filtermedium sorgsam pflegen. Nitrifizierende Bakterien benötigen wir dringend um **Nitrit**

umzubauen. Mit Kupfer töten wir sie ab. Nebenbei bemerkt: Mit dauerhafter Filterung über Aktivkohle hungern wir sie aus. Kupfer ist auch giftig für Schnecken, Garnelen, Krebse, Vallisnerien und Wasserpest.

Nicht anders verhält es sich mit dem Atrazin. Es wurde in der Landwirtschaft bereits vor etwa 15 Jahren verboten. Seine Abbauprodukte finden sich aber wegen der langen Halbwertzeit heute noch immer in einigen Grundwassserbrunnen. Der Einsatz gegen Algen im Aquarium und Gartenteich ist blanker Hohn, wenn man bedenkt, dass dieses Mittel als "Gesundheitsschädlich" und "Umweltgefährlich" eingestuft wurde.

Es tötet Fischnährtiere. Dazu gehören zum Beispiel Krebstiere wie Wasserflöhe, Insektenlarven und Schnecken.

Gefahrensymbol "Umweltgefährlich" Man beachte den Fisch!

Fadenalgen: vermutlich aus der Gattung *Cladophora*

Man findet diese Substanz zum Beispiel unter den Namen Aktikon, Alazine, Azinotox, G-30027, Gesaprim, Malermais. Simazat und Weedex in den Beipackzetteln. Ein neues Gesetzt zwingt übrigens in Zukunft die Hersteller die Inhaltsstoffe anzugeben. Möglicherweise werden dann einige "Algenmittel" vom Markt verschwinden. Es gibt Untersuchungen, die nachweisen, dass die Konzentration von Atrazin bei einer Wirkung gegen Algen so nahe an der tödlichen Konzentration für manche Wasserpflanzen liegt. dass Unterschied zwischen toten Algen und toten Vallisnerien in einem 100-Liter-Becken etwa einen Tropfen ausmacht. Am 31. Oktober 1986 kam es beim Chemiekonzern Ciba-Geigy zu einem Unfall, bei dem 400 Liter Atrazin mit dem Abwasser in den Rhein gelangten. Ein weiterer Chemieunfall bei Sandoz in der Nähe von Basel einen Tag später verursachte zusammen mit diesem Zwischenfall ein Fischsterben. 400 km

des Rheins waren danach frei von Aalen. Grünalgen sind Pflanzen und jeder Versuch sie chemisch zu bekämpfen schadet auch unserer bewusst eingesetzten dass Aquarienpflanzen! Tatsächlich sagt man, Grünalgen optimales Pflanzenwasser anzeigen. Das ist natürlich nur ein geringer Trost. Gegen festsitzende Algen aller Art, zum Beispiel gegen Punktalgen an den Scheiben und gegen die harten Krusen auf den Blättern von Anubias helfen Rennschnecken. Die Tiere schaben Grünalgen und Kieselalgen von jeder Unterlage ohne dabei die Pflanzen zu schädigen. Gegen Fadenalgen lassen sich gut Amanogarnelen (Caridina multidentata, früher Caridina japonica) und andere Zwerggarnelen einsetzen. Auch Apfelschnecken (Pomacea bridgesii) haben eine gute Wirkung. Wie gut die Wirkung ist, hängt natürlich vom Verhältnis der Algenmenge zu den Tieren ab. Peter Schneider empfiehlt zum Beispiel Posthornschnecken zur Bekämpfung von Pelz- oder Samtalgen. Allerdings gibt er zu, dass man mindestens 35 ausgewachsene Tiere für ein 100 Liter Aquarium benötigt bzw. 120 für ein 300 Literbecken. Die Tiere vermehren sich rasant und werden danach selbst zur Plage. Besser geeignet sind einige Fische wie der Florida-Kärpfling (Jordanella floridae). Dieser frisst aber auch feinfiedrige Pflanzen an. Auch Prachtbarben (Barbus conchonius) fressen Fadenalgen. Diese Tiere werden aber zwischen 8 und 15 cm lang und eignen sich nur für größere Aquarien. Sie fressen die Algen auch nur, wenn sie sie als Jungtiere (bis 2 cm Länge) kennen lernen. Ebenfalls ein Algenfresser ist Garra rufa. Es gibt eine Reihe weiterer Tiere, die Algenbeläge mehr oder weniger gut und schnell abweiden. Welches davon in welches Aquarium passt hängt neben den Wasserwerten natürlich auch von den Mitbewohnern ab. Beispielsweise lassen sich Schnecken ganz schlecht mit Kugelfischen und Prachtschmerlen, sowie kleine Garnelen schlecht mit größeren barschen vergesellschaften. Bei der Bekämpfung von Algen gilt, wie bei allen Fragen in der Aquaristik:

Bei der Bekämpfung von Algen gilt, wie bei allen Fragen in der Aquaristik: "Gut Ding will Weile haben." oder "Was lange wärt, wird endlich gut". Darum ist auch an dieser Stelle Schluss. Fortgesetzt wird die Reihe im September mit den Rot- und Braunalgen bzw. im Oktober mit Blau- und Kieselalgen.

Wirbellose – Neritina gagtes

Neritina gagates ist DIE Rennschnecke. Warum diese Tiere als Rennschnecken bezeichnet werden weiß vermutlich niemand, denn sie sind in der Regel deutlich langsamer als die meisten anderen Schnecken, die wir aus den Aquarien kennen. Die Schnecken gehören zur Familie der Neritidae, deren meisten Mitglieder im Meer leben. Sie sind daran angepasst in der Gezeitenzone zu leben. Das bedeutet, dass sie eine Zeit lang überflutet sind und Nahrung von Felsen, Pflanzen oder Schlamm weiden und danach eine Zeit auf dem Trockenen sitzen und ruhen. Auch die Süßwasserarten verlassen von Zeit zu Zeit das Wasser.

Darum muss ein Aquarium zur Haltung dieser Tiere gut abgedeckt sein. Kriechen die Tiere über den Rand, dann finden sie den Weg zurück in das Aquarium nicht mehr und vertrocknen, wenn sie nicht gefunden werden nach einigen Tagen. Das Selbe gilt für die anderen Arten der Familie, wie die Geweihschnecke (*Clithon corona*) oder die O-Ring Snail (*Nertina puligera*).

Für alle diese Arten gilt, dass sie sich nicht ohne weiteres im Aquarium vermehren. Die Weibchen aller Arten legen kleine weißliche Eikokons an festen Substraten ab aus denen schwimmende Larven schlüpfen. Diese benötigen zur Entwicklung aber eine spezielle Diät aus bisher nicht bekanntem Plankton und entwickeln sich im Aquarium darum nicht. Alle bisherigen Meldungen von Aquarianern, dass sie junge Rennschnecken im Aquarium hätten stellten sich

Rennschnecken sind sehr variabel in der Färbung

bisher als Fehleinschätzungen heraus. Entweder handelte es sich um Posthornschnecken oder um Süßwassernapfschnecken.

Die Rennschnecke wird 20-25 mm lang und 12-14 mm breit. Ihr Gehäuse ist sehr hart und hat eine glatte Oberfläche. Die Grundfarbe variiert zwischen gelbbraun bis rotbraun. Das Muster besteht aus schwarzen, geraden. geschwungenen oder schmalen oder gezackten, breiten Linien oder Punkten. Der Kopf und sind deutlich von einander abgesetzt. Sie sind beide breit oval. Die Mundöffnung ist klein. Gehäusedeckel ist nur zu sehen, wenn sich die Tiere vollständig in ihr Gehäuse zurückgezogen haben.

Die Tiere fressen Algenaufwuchs. Darunter auch harte, verkalkte Algen, festsitzende grüne Punktalgen und

Kieselalgen. Sie nehmen aber auch Fischfutterreste gerne an. Etwa eine Schnecke auf 10 Liter Wasser reicht aus um Algenbeläge bei "normalen" Wasserwerten zu beseitigen. Bei einer extremen Überdüngung mit Nitrat oder Phosphat muss natürlich die Ursache des Algenwuchses zuerst beseitigt werden. Regelmäßige Wasserwechsel und eine reduzierte Fütterung sind hier meist der Schlüssel zum Erfolg.

Die Rennschnecke ist eine anspruchslose, nützliche und schöne Schnecke für Aquarien aller Größen.

Pflanzenporträt – Aegagropila linnaei KÜTZING 1843

Der Algenball, Moosball oder Seeknödel wird oft der Gattung *Cladophora* zugerechnet. Ursprünglich wurde die Art aber als *Aegagropila linnaei* beschrieben und erst später zunächst als Untergattung und dann vollständig in die Gattung *Cladophora* überführt. Mittlerweile ist man zum alten Namen zurückgekehrt. Die Fäden von *Aegagropila* verfilzen, die von *Cladophora* aber nicht. Zusätzlich wurde in den Zellwänden von *Aegagropila* Chitin gefunden, das bei *Cladophora* fehlt.

Die Art ist auf der nördlichen Halbkugel verbreitet, aber nicht häufig. Sie bildet teilweise große Kolonien in Seen auf Island, in der Ukraine, in Japan und in Estland. Früher waren auch Vorkommen in Österreich und in Deutschland bekannt. Allerdings sind die Vorkommen auf Bereiche mit bestimmten Licht-, Temperatur- und Strömungsverhältnissen beschränkt. Das hat zur Folge, dass die Kolonien durch die Einleitung oder Abzweigung von Wasser an den Naturstandorten gefährdet werden.

Es gibt drei Wuchsformen der Algen. Sie wächst als Epiphyt auf der Schattenseite von Felsen oder frei treibend als Schicht über schlammigem Substrat. Wenn die Algen in der Strömung gleichmäßig rollen, bilden sich die beliebten Kugeln.

Die Algenkugeln wachsen nur etwa 5 mm im Jahr. Sie werden in Japan im Akansee mit bis zu 30 cm besonders groß. Die meisten Mooskugeln im Handel sind zwischen 3 und 7 cm im Durchmesser. Sie können über mehrere Jahre kultiviert werden. Teilweise brechen sie aber auseinander und bilden dann flache Polster. Es wird teilweise vermutet, dass das mit zu hohen Temperaturen im Aquarium (um 27°C) zusammenhängt. Das kann aber zumindest nicht die einzige Ursachse sein, da dieses Phänomen auch im Freiland auftritt. Möglicherweise handelt es sich aber auch um eine Phase der natürlichen Vermehrung, über die wenig bekannt ist.

Im Inneren sind größere Bälle manchmal hohl. Ansonsten sind sie durchgängig grün. Die nicht belichteten Zellen im Inneren bilden größere, aber unregelmäßigere und weniger Chloroplasten als die Zellen außen. Sie haben auch einen anderen Stärkegehalt. Werden diese Zellen dem Licht ausgesetzt, teilen sich die Chloroplasten und werden kleiner. Innerhalb von 48 Stunden verhalten sich die Zellen wie die Außenzellen auch.

Bereits um 1970 waren die Algenbälle in der Aquaristik in Ostdeutschland bekannt. Vermutlich stammten die Pflanzen damals aus Brandenburg und Mecklenburg. Dort kamen sie zum Beispiel im Galenbecker See vor.

Im Aquarium sollte man die Algenbälle regelmäßig wenden und bei Bedarf spülen, damit sie nicht von Mulm bedeckt werden und ihre runde Form behalten.

heimbiotop-newsletter

Informationen und Angebote aus dem heimbiotop-onlineshop

Die Algen werden oft als Wundermittel gegen Nitrit/Nitrat im Aquarienhandel angeboten. Die Bälle nehmen aber nicht wie ein Schwamm oder Ionentauscher einfach irgendwelche Stickstoffverbindungen zwischen ihre Fasern und halten sie fest. Sie nutzen die Nährstoffe genau wie andere Pflanzen um ihre eigne Körpermasse aufzubauen. In Aquarienforen wurde wiederholt die Frage gestellt ob das Nitrat schlagartig wieder frei wird, wenn man auf den Ball drückt. Das tut es natürlich nicht. Die sind als Eiweiße und in der DNS der Algen verbaut. Die Pflanzen eignen sich nicht zur gezielten Senkung des Nitratwertes, da sie zu langsam wachsen und dem Wasser darum auch nur wenige Nährstoffe entziehen. Schnellwachsende Pflanzen wie Hornkraut (*Ceratophyllum*), die kleine Ambulia (*Limnophila sessilis*) oder das Fettblatt (*Bacopa carolineana*) leisten da deutlich mehr.

Als Dekorationselement sind die Mooskugeln immer ein Hingucker. Ihre ungewöhnliche Form macht sie zu einem Blickfang in jedem Aquarium.

Vorschau auf Newsletter Nr. 4/ Oktober 2007:

Echinodorus-Arten im Handel – Who is who Teil III - Echinodorus tenellus und die E. bolivianus-Gruppe

Die kleinen Ausläufer bildenden Amazonaspflanzen unterscheiden sich deutlich von den großen Froschlöffeln der Gattung *Echinodorus* und werden heute der Gattung *Helanthium* zugeordnet. Es gibt zahlreiche Namen und Synonyme. In diesem dritten und letzten Teil unserer Miniserie geben wir einen Überblick über die verschiedenen Formen in dieser Gruppe.

Algen - Freund oder Feind? - Teil II: Rot- und Braunalgen

In der Süßwasseraquaristik spielen die Braunalgen keine Rolle. Allerdings halten sie so manche kulinarische Überraschung bereit. Rotalgen gehören, wenn sie im Aquarium auftreten, zu den lästigsten Algen überhaupt.

Wirbellose: Macrobrachium nipanae

Diese Großarmgarnele aus Thailand ist in der Aquaristik bisher wenig verbreitet. Sie ist problemlos im Aquarium zu vermehren und zu pflegen.

Pflanzenportrait: Lilaeopsis brasiliensis

Unter dem Namen Neuseelandgras wurde diese Pflanzen bekannt. Als eine kleine Ausläufer bildende Art, wird sie oft zur Rasenbildung im Vordergrund gepflanzt.